Manufacturing is the creation or production of goods with the help of equipment, labor, machines, tools, and chemical or biological processing or formulation. It is the essence of the secondary sector of the economy. The term may refer to a range of human activity, from handicraft to high-tech, but it is most commonly applied to industrial design, in which raw materials from the primary sector are transformed into finished goods on a large scale. Such goods may be sold to other manufacturers for the production of other more complex products (such as aircraft, household appliances, furniture, sports equipment or automobiles), or distributed via the tertiary industry to end users and consumers (usually through wholesalers, who in turn sell to retailers, who then sell them to individual customers).
Manufacturing engineering is the field of engineering that designs and optimizes the manufacturing process, or the steps through which raw materials are transformed into a final product. The manufacturing process begins with the product design, and materials specification. These materials are then modified through manufacturing to become the desired product.
Contemporary manufacturing encompasses all intermediary stages involved in producing and integrating components of a product. Some industries, such as semiconductor and steel manufacturers, use the term fabrication instead.
The manufacturing sector is closely connected with the engineering and industrial design industries.
Modern manufacturing
Bell Aircraft's assembly plant in Wheatfield, New York in 1944
Electrification of factories, which had begun gradually in the 1890s after the introduction of the practical DC motor and the AC motor, was fastest between 1900 and 1930. This was aided by the establishment of electric utilities with central stations and the lowering of electricity prices from 1914 to 1917. Electric motors allowed more flexibility in manufacturing and required less maintenance than line shafts and belts. Many factories witnessed a 30% increase in output owing to the increasing shift to electric motors. Electrification enabled modern mass production, and the biggest impact of early mass production was in the manufacturing of everyday items, such as at the Ball Brothers Glass Manufacturing Company, which electrified its mason jar plant in Muncie, Indiana, U.S. around 1900. The new automated process used glass blowing machines to replace 210 craftsman glass blowers and helpers. A small electric truck was now used to handle 150 dozen bottles at a time whereas previously used hand trucks could only carry 6 dozen bottles at a time. Electric mixers replaced men with shovels handling sand and other ingredients that were fed into the glass furnace. An electric overhead crane replaced 36 day laborers for moving heavy loads across the factory.[35]
Mass production was popularized in the late 1910s and 1920s by Henry Ford's Ford Motor Company, which introduced electric motors to the then-well-known technique of chain or sequential production. Ford also bought or designed and built special purpose machine tools and fixtures such as multiple spindle drill presses that could drill every hole on one side of an engine block in one operation and a multiple head milling machine that could simultaneously machine 15 engine blocks held on a single fixture. All of these machine tools were arranged systematically in the production flow and some had special carriages for rolling heavy items into machining positions. Production of the Ford Model T used 32,000 machine tools.
Lean manufacturing, also known as just-in-time manufacturing, was developed in Japan in the 1930s. It is a production method aimed primarily at reducing times within the production system as well as response times from suppliers and to customers. It was introduced in Australia in the 1950s by the British Motor Corporation (Australia) at its Victoria Park plant in Sydney, from where the idea later migrated to Toyota. News spread to western countries from Japan in 1977 in two English-language articles: one referred to the methodology as the "Ohno system", after Taiichi Ohno, who was instrumental in its development within Toyota. The other article, by Toyota authors in an international journal, provided additional details. Finally, those and other publicity were translated into implementations, beginning in 1980 and then quickly multiplying throughout the industry in the United States and other countries.
Manufacturing strategy
According to a "traditional" view of manufacturing strategy, there are five key dimensions along which the performance of manufacturing can be assessed: cost, quality, dependability, flexibility and innovation.
In regard to manufacturing performance, Wickham Skinner, who has been called "the father of manufacturing strategy", adopted the concept of "focus", with an implication that a business cannot perform at the highest level along all five dimensions and must therefore select one or two competitive priorities. This view led to the theory of "trade offs" in manufacturing strategy. Similarly, Elizabeth Haas wrote in 1987 about the delivery of value in manufacturing for customers in terms of "lower prices, greater service responsiveness or higher quality". The theory of "trade offs" has subsequently being debated and questioned, but Skinner wrote in 1992 that at that time "enthusiasm for the concepts of 'manufacturing strategy' [had] been higher", noting that in academic papers, executive courses and case studies, levels of interest were "bursting out all over".
Manufacturing writer Terry Hill has commented that manufacturing is often seen as a less "strategic" business activity than functions such as marketing and finance, and that manufacturing managers have "come late" to business strategy-making discussions, where, as a result, they make only a reactive contribution.